7.2 Cell Structure

Lesson Objectives

- Describe the structure and function of the cell nucleus.
- Describe the role of vacuoles, lysosomes, and the cytoskeleton.
- Identify the role of ribosomes, endoplasmic reticulum, and Golgi apparatus in making proteins.
- Describe the function of the chloroplasts and mitochondria in the cell.
- Describe the function of the cell membrane.

Lesson Summary

Cell Organization Eukaryotic cells contain a nucleus and many specialized structures.

- **Cytoplasm** is the fluid portion of a cell.
- **Organelles** are structures that have specialized functions in eukaryotic cells.
- The nucleus contains DNA and controls the activity of a cell.

Organelles That Store, Clean Up, and Support These structures include:

- **vacuoles**: membrane-enclosed saclike structures that store water, salts, and organic molecules
- **lysosomes**: small organelles filled with enzymes that break down large molecules and organelles that are no longer useful
- The **cytoskeleton**: a network of protein filaments; it helps the cell maintain its shape and is involved in movement
- **centrioles**: organelles made from tubulins; they help organize cell division in animal cells

Organelles That Build Proteins Three kinds of organelles work with the nucleus to make and distribute proteins:

- **ribosomes**: small particles of RNA and protein found throughout the cytoplasm in all cells; they produce proteins by following coded instructions from DNA
- The **endoplasmic reticulum (ER)**: an internal membrane system where lipid components of the cell membrane are assembled, along with proteins and other materials
- The **Golgi apparatus**: an organelle that appears as a stack of flattened membranes; it modifies, sorts, and packages proteins and other materials from the ER for storage in the cell or release outside the cell

Organelles That Capture and Release Energy Two types of organelles act as power plants of the cells. Both types are surrounded by two membranes.

- **Chloroplasts** capture the energy from sunlight and convert it into food that contains chemical energy in a process called photosynthesis. Cells of plants and some other organisms contain chloroplasts, which contain chlorophyll.
- **Mitochondria** are found in nearly all eukaryotic cells; they convert the chemical energy stored in food to a usable form.
Cellular Boundaries All cells are surrounded by a cell membrane. Many cells also have a cell wall. Both cell membranes and cell walls separate cells from the environment and provide support.

- **Cell walls** support, shape, and protect the cell. Most prokaryotes and many eukaryotes have them. Animals do not have cell walls. Cell walls lie outside the cell membrane. Most cell walls allow materials to pass through them.

- A cell membrane consists of a **lipid bilayer**, a strong but flexible barrier between the cell and its surroundings. The cell membrane regulates what enters and leaves the cell and also protects and supports the cell. Most biological membranes are **selectively permeable**, allowing some substances, but not others, to pass across them.

Cell Organization

1. Describe the relationship between the cytoplasm and the nucleus of a cell.

2. What does the term **organelle** mean literally?

Cell Organization

Follow the directions.

3. Use the words below to label the plant cell. Some structures have been labeled for you.

<table>
<thead>
<tr>
<th>cell wall</th>
<th>mitochondrion</th>
<th>ribosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>chloroplast</td>
<td>nucleus</td>
<td>vacuole</td>
</tr>
</tbody>
</table>

Plant Cell

- smooth endoplasmic reticulum
- Golgi apparatus
- rough endoplasmic reticulum
- cell membrane
4. Use the words below to label the animal cell. Some structures have been labeled for you.

<table>
<thead>
<tr>
<th>cell membrane</th>
<th>mitochondrion</th>
<th>rough endoplasmic reticulum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golgi apparatus</td>
<td>nucleus</td>
<td>ribosome</td>
</tr>
</tbody>
</table>

Animal Cell

Use the diagrams to answer the questions.

5. Which structure is found in a plant cell but not in an animal cell? Circle the correct answer.

- chloroplast
- cell membrane
- ribosome

6. What is the main function of vacuoles?

Organelles That Store, Clean Up, and Support

7. What are vacuoles?

8. What are the two roles of the central vacuole in plant cells?

9. How are contractile vacuoles different from other types of vacuoles?

10. Which structures of the cytoskeleton are found in animal cells but not in plant cells?

11. What other structures of the cytoskeleton would show the same pattern of microtubules as a flagellum?

Organelles That Build Proteins

12. What are ribosomes? What do they do?

13. In which organelle are the lipid components of the cell membrane assembled?
14. What is the difference between rough ER and smooth ER?

15. Using the cell as a factory analogy, describe the role of the Golgi apparatus in cells.

16. Suppose a cell’s Golgi apparatus does not function properly. How might this problem affect other cells?

For Questions 17–20, write True if the statement is true. If the statement is false, change the underlined word or words to make the statement true.

17. Chloroplasts are never found in animal cells.

18. Unlike chloroplasts, mitochondria are surrounded by a double membrane.

19. Nearly all of the mitochondria in your cells were inherited from your mother.

20. Both chloroplasts and mitochondria lack genetic information in the form of DNA.

Cellular Boundaries

For Questions 21–24, complete each statement by writing the correct word or words.

21. Most cell _____________ are porous to water and other materials but strong enough to support and protect cells.

22. Nearly all of the plant tissue called _____________ is made up of cell walls.

23. Besides supporting and protecting a cell, the cell membrane _____________ what enters and leaves the cell.

24. Complete the diagram of a section of a cell membrane. Then, on the line below the diagram, write the name of the model that describes the cell membrane’s structure.